solve(D^2-4d+3)y=0

Simple and best practice solution for solve(D^2-4d+3)y=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for solve(D^2-4d+3)y=0 equation:


Simplifying
solve(D2 + -4d + 3) * y = 0

Reorder the terms:
elosv(3 + D2 + -4d) * y = 0

Reorder the terms for easier multiplication:
elosv * y(3 + D2 + -4d) = 0

Multiply elosv * y
elosvy(3 + D2 + -4d) = 0
(3 * elosvy + D2 * elosvy + -4d * elosvy) = 0

Reorder the terms:
(-4delosvy + 3elosvy + elosvyD2) = 0
(-4delosvy + 3elosvy + elosvyD2) = 0

Solving
-4delosvy + 3elosvy + elosvyD2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Add '-3elosvy' to each side of the equation.
-4delosvy + 3elosvy + -3elosvy + elosvyD2 = 0 + -3elosvy

Combine like terms: 3elosvy + -3elosvy = 0
-4delosvy + 0 + elosvyD2 = 0 + -3elosvy
-4delosvy + elosvyD2 = 0 + -3elosvy
Remove the zero:
-4delosvy + elosvyD2 = -3elosvy

Add '-1elosvyD2' to each side of the equation.
-4delosvy + elosvyD2 + -1elosvyD2 = -3elosvy + -1elosvyD2

Combine like terms: elosvyD2 + -1elosvyD2 = 0
-4delosvy + 0 = -3elosvy + -1elosvyD2
-4delosvy = -3elosvy + -1elosvyD2

Divide each side by '-4elosvy'.
d = 0.75 + 0.25D2

Simplifying
d = 0.75 + 0.25D2

See similar equations:

| 2x+34=12-76 | | 9y(9-y)=1 | | 11n-7=4 | | Y-3x=-3 | | (x^2-5*x)*(x-10)=x^3-15x^2+50x | | Q=10X+4Y+0.2XY | | 61+(5x-1)= | | e=7+(-13.5)-(2.5) | | 7x-5y=-16 | | X+21-35Y= | | 5+ln(x-4)=3 | | (3+7x)(6+2x)=0 | | m^4-2m^3+3m^2+2m+5=0 | | (9-y)(-9y)=1 | | 2*sin(2x)=0 | | (9-y)(9y)=1 | | 8x-55=3x | | 3x^2+2xy-25y^3=0 | | 9-y(9(1+y)x)=1 | | -4(2t+1)=-20 | | 9-y(9(1-y)x)=1 | | 3(f-7)=6 | | 10(s-6)=-125 | | 81x-9x(9)=1 | | 81x-9x(1)=1 | | X-7=3x-9 | | logx=cosx | | 2+14+4+6= | | 10x=6x+6 | | h(x)=0.25 | | 56(a+2-x)= | | 81(1-y)-9(1-y)y=0 |

Equations solver categories